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Abstract. The algebraic–geometric approach is extended to study evolution equations associated
with the energy-dependent Schrödinger operators having potentials with poles in the spectral
parameter, in connection with Hamiltonian flows on nonlinear subvarieties of Jacobi varieties. The
general approach is demonstrated by using new parametrizations for constructing quasi-periodic
solutions of the shallow-water and Dym-type equations in terms of theta-functions. A qualitative
description of real-valued solutions is provided.

1. Introduction

The quasi-periodic solutions of most classical integrable PDEs can be obtained using the
inverse spectral transform method (see, for review, Dubrovin 1981, Ablowitz and Segur 1981,
Novikov et al 1984, Newell 1985, Ablowitz and Clarkson 1991). This is done by establishing
a connection with an isospectral eigenvalue problem for an associated Schrödinger operator.

The algebraic–geometric technique was also developed for studying solutions of nonlinear
evolution equations. One of the applications of this approach can be summarized as follows.
By using the trace formula, families of quasi-periodic and soliton solutions are associated
with Hamiltonian flows on finite-dimensional phase spaces. These flows are described by
using so-called µ-variable representations leading to an Abel–Jacobi mapping, which include
holomorphic and, in some cases, meromorphic differentials (see, amongst others, Novikov
1974, Lax 1975, Its and Kotlyarov 1976, Alber 1979, Ercolani 1989, Alber and Alber 1985,
Belokolos et al 1994). Then the mapping is inverted in terms of Riemann theta-functions
and their singular limits. Many well known nonlinear equations such as KdV, sine–Gordon,
focusing and defocusing nonlinear Schrödinger equations, which describe a wide variety of
important phenomena in physics, optics, biology and engineering, have been studied by using
this approach.

Recently special attention was given to the shallow-water (SW) equation derived by
Camassa and Holm (1993) in the context of the Hamiltonian structure,

Ut + 3UUx = Uxxt + 2UxUxx + UUxxx − 2κUx (1.1)
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and the Dym-type equation (see Cewen 1990, Hunter and Zheng 1994, Alber et al 1994, 1995)

Uxxt + 2UxUxx + UUxxx − 2κUx = 0 κ = const. (1.2)

Camassa and Holm (1993) described classes of n-peakon soliton-type solutions for an
integrable (SW) equation (1.1). In particular, they obtained a system of completely integrable
Hamiltonian equations for the locations of the ‘peaks’ of the solution, the points at which its
spatial derivative changes sign. In other words, each peakon solution can be associated with a
mechanical system of moving particles. Calogero (1995) and Calogero and Francoise (1996)
further extended the class of mechanical systems of this type. The r-matrix approach was
applied to the Lax pair formulation of an n-peakon system by Ragnisco and Bruschi (1996),
who also pointed out the connection of this system with the classical Toda lattice. A discrete
version of the Adler–Kostant–Symes factorization method was used by Suris (1996) to study a
discretization of the peakon lattice, realized as a discrete integrable system on a certain Poisson
submanifold of gl(n) equipped with an r-matrix Poisson bracket. Beals et al (1999, 2000) used
the Stieltjes theorem on continued fractions and the classical moment problem for studying
multi-peakon solutions of the SW equation. Generalized peakon systems are described for any
simple Lie algebra by Alber et al (2000b).

The problem of describing complex quasi-periodic solutions of the equations (1.1)
and (1.2) can be reduced to solving finite-dimensional Hamiltonian systems on symmetric
products of hyperelliptic curves. Namely, according to Alber et al (1994, 1995, 1999), such
solutions can be represented in the following form:

U(x, t) = µ1 + · · · + µg −M (1.3)

where g is a positive integer, M is a constant and the evolution of the variables µ is given by
the equations

g∑
i=1

µk
i dµi

2
√
R(µi)

=




0 k = 1, . . . , g − 2

dt k = g − 1

dx k = g.

(1.4)

Here R(µ) is a polynomial of degree 2g + 2 (for the shallow-water equation (1.1)) or 2g + 1
(for the Dym-type equation (1.2)). Also M = 0 for the Dym-type equation.

In contrast to the finite-dimensional reductions of such equations as KdV and sine–Gordon
equations, system (1.4) contains a meromorphic differential. Also, the number of holomorphic
differentials is less than the genus g of the corresponding hyperelliptic curve: W 2 = R(µ).
This implies that the problem of inversion (1.4) cannot be solved in terms of meromorphic
functions of x and t . Examples of such equations arise in several problems of mechanics. These
were considered by Vanhaecke (1995) and Abenda and Fedorov (2000), where a connection
was established with the flows on nonlinear subvarieties of hyperelliptic Jacobian varieties, so-
called strata. In Alber et al (1997) a whole class ofN -component systems with poles was shown
to be integrable by reducing them to similar nonstandard inversion problems which contained
meromorphic differentials. ThereforeN -component systems can be overdetermined, implying
that the genus of the spectral curve can be higher than the number of µ-variables.

Quasi-periodic solutions of the Dym equation were studied by Dmitrieva (1993a) and
Novikov (1999) by using a connection with KdV equation and introducing additional phase
functions. Soliton solutions of the Dym-type equation were studied by Dmitrieva (1993b).
Periodic solutions of the shallow-water equation were discussed by McKean and Constantin
(1999). The complex geometry of the travelling wave solutions, cusp and peakon solutions was
previously studied by Alber et al (1994, 1995, 1999, 2000a) in connection with geodesic flows
on Riemannian manifolds and by Li and Olver (1998) from the point of view of singularity
analysis.
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The main goal of this paper is to describe explicit formulae in terms of theta-functions
and their singular limits for quasi-periodic and soliton-like solutions to the shallow-water
equation (1.1) and Dym-type equation (1.2). We also explain the role of the ‘mysterious’
phase functions used by Dmitrieva (1993a) and Novikov (1999) when studying quasi-periodic
solutions of the equation of the Dym type.

Usually in the case of integrable evolution equations quasi-periodic flows are linearized on
the Jacobi varieties. In this paper we show that in the case ofN -component systems with poles
the x- and t-flows take place on nonlinear subvarieties (strata) of generalized (noncompact)
Jacobians. This makes the above nonlinear equations quite different from such well known
equations as KdV, sine–Gordon and nonlinear Schrödinger equations. For the sake of clarity,
in this paper we describe solutions related to hyperelliptic curves of genus 2. For the formulae
in the general n-dimensional case, see Alber and Fedorov (2000).

This paper is organized as follows. In section 2 we demonstrate the main difference
between the nonlinear SW and Dym-type equations and the KdV equation from the point of
view of the algebraic–geometric approach by obtaining explicit expressions in terms of theta-
functions for the stationary quasi-periodic solutions in the genus 2 case. This is done by using
new complex parametrizations.

In section 3 we find time-dependent solutions by integrating and inverting equations (1.4)
in the genus 2 case. We show that these equations can be extended to a standard Abel–Jacobi
mapping of a symmetric product of three copies of the hyperelliptic curve to its generalized
Jacobian. The original system (1.4) then defines a mapping onto a two-dimensional nonlinear
stratum of the Jacobian, a generalized theta-divisor, where the dynamics actually takes place.
By fixing t in the expression for the solution in terms of theta-functions, we then recover the
stationary quasi-periodic solutions obtained in section 2.

Section 4 contains qualitative analysis of real bounded solutions for the case when the
Weierstrass points of the spectral curve are real.

Finally, notice that the general case of g-phase (2 � g) solutions of the SW and Dym-type
equations as well as their different singular limiting cases are described in detail by Alber and
Fedorov (2000) and Alber and Miller (2001).

2. Stationary quasi-periodic solutions

The main difference from the point of view of the algebraic–geometric approach between
N -component systems associated with the energy-dependent Schrödinger operators having
potentials with poles and more traditional completely integrable equations, such as the KdV
equation, can be demonstrated by using genus 2 quasi-periodic solutions of the SW and Dym
equations. One needs to consider them both because these two equations provide examples of
two different subclasses of systems which should be treated differently.

We start by describing stationary solutions which describe profiles of the quasi-periodic
wave solutions of the two equations. For the sake of clarity, in this paper we restrict ourselves
to the simplest nontrivial case g = 2.

Stationary quasi-periodic solutions for the SW equation. According to the trace formula
(1.3), in the genus 2 case we have

U(x, t) = µ1 + µ2 −
5∑

j=1

aj (2.1)
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and equations (1.4) take the form

µ1 dµ1

2
√
R6(µ1)

+
µ2 dµ2

2
√
R6(µ2)

= dt

µ2
1 dµ1

2
√
R6(µ1)

+
µ2

2 dµ2

2
√
R6(µ2)

= dx

(2.2)

where

R6(µ) = −κµ(µ− a1) . . . (µ− a5) a1, . . . , a5 = const.

(For details see Alber et al 1994.) Here we suppose that all the roots ofR6(µ) are distinct. The
variablesµ1 andµ2 must be regarded as coordinates of pointsP1 = (µ1, w1),P2 = (µ2, w2) on
the genus 2 hyperelliptic curve � = {w2 = R6(µ)}. Equations (2.2) involve one holomorphic
differential and one meromorphic differential of the third kind having a pair of simple poles at
the infinite points ∞− and ∞+ on�. Integrating (2.2), we obtain the mapping of the symmetric
product �(2) to C

2 = (t, x):∫ P1

P0

µ dµ

2
√
R6(µ)

+
∫ P2

P0

µ dµ

2
√
R6(µ)

= t

∫ P1

P0

µ2 dµ

2
√
R6(µ)

+
∫ P2

P0

µ2 dµ

2
√
R6(µ)

= x

(2.3)

where P0 is a fixed basepoint of the mapping. Notice that choosing P1 or P2 = ∞−,∞+,
yields x = ∞. Let us fix a canonical basis of cycles A1, A2, B1, B2 on � in a standard way
(see, for example, Mumford 1983). The mapping has associated with it four independent (over
the reals) two-dimensional vectors of periods of the differentials described above, along these
cycles. In addition, it has one extra period vector corresponding to a zero-homology cycle
around ∞− or ∞+. As a result, the mapping (2.3) has five vectors of periods in C

2. Hence
its inversion is not well defined. Namely, there are no meromorphic functions on C

2 with
five periods. In particular, U(x, t) is not a meromorphic or single-valued complex function of
(t, x).

In order to describe properties of U(x, t), we fix time by putting t = t0 (dt = 0) and
consider stationary solutions U(x, t0). Now introduce a new coordinate x ′ such that

dx = µ1µ2 dx ′. (2.4)

Then equations (2.2) lead to the Abel–Jacobi mapping of �(2) to the Jacobian variety Jac(�)
of �, which includes holomorphic differentials only:∫ P1

P0

dµ

2
√
R6(µ)

+
∫ P2

P0

dµ

2
√
R6(µ)

= u1

∫ P1

P0

µ dµ

2
√
R6(µ)

+
∫ P2

P0

µ dµ

2
√
R6(µ)

= u2

u1 = x ′ + const u2 = const

(2.5)

where u1 and u2 are coordinates on the universal covering C
2 of Jac(�).

Let ω̄1, ω̄2 be the dual basis of normalized holomorphic differentials on � with respect
to the choice of cycles described above and z1 and z2 be the corresponding coordinates on the
universal covering of Jac(�):

ω̄1 = d11 + d12µ

2
√
R6(µ)

dµ ω̄2 = d21 + d22µ

2
√
R6(µ)

dµ

z1 = d11u1 + d12u2 z2 = d21u1 + d22u2.

(2.6)
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Here the normalizing constants d are uniquely determined by the conditions
∮
Ai
ω̄j = δij .

Recall that the standard theta-function related to a Riemann surface of genus g and theta-
functions with characteristics α = (α1, . . . , αg), β = (β1, . . . , βg) ∈ R

g have the form

θ(z|B) =
∑
M∈Zg

exp( 1
2 (BM,M) + (M, z))

(M, z) =
g∑
i=1

Mizi (BM,M) =
g∑

i,j=1

BijMiMj

θ

[
α

β

]
(z|B) = exp{(Bα, α)/2 + (z + 2π iβ, α)}θ(z + 2π iβ + Bα|B)

(2.7)

where B is the g×g period matrix of �. In what follows we shall omit it. Now we choose the
basepoint P0 of the mapping (2.5) to be the last Weierstrass point (a5, 0) on �. Then, the trace
formula for even-order hyperelliptic curves (see, e.g., Clebsch and Gordan 1866, Dubrovin
1981) yields the following formula:

U = µ1 + µ2 −
5∑

j=1

aj = const − ∂W log
θ [δ](z − q/2)

θ [δ](z + q/2)

z = (z1, z2) q = (q1, q2)
T qi =

∫ ∞+

∞−
ω̄i

(2.8)

where, in view of the normalizing change (2.6), one has that z1 = d11x
′ + const, z2 =

d21x
′ + const. Also, ∂W denotes a derivative along a tangent vector W of � ⊂ Jac(�)

at ∞+ which is W = (0, 1)T and W = (d12, d22)
T in coordinates (u1, u2) and (z1, z2)

respectively. Finally, (δ = (δ′′, δ′)T ; δ′′, δ′ ∈ 1
2 Z

g/Zg) is a half-integer theta-characteristic
which corresponds to a vector of Riemann constants (see Mumford 1983). In the case of a
standard canonical basis of cycles chosen above, and a basepoint P0 = (a5, 0) one has

δ′ = (1/2, . . . , 1/2)T δ′′ = (g/2, (g − 1)/2, . . . , 1, 1/2)T (mod 1). (2.9)

Thus, in our case one has

δ =
(

0 1/2
1/2 1/2

)
.

The function U(z1, z2) is meromorphic on Jac(�) and it has simple poles along two translates
of the theta-divisor ' = {θ(z) = 0} ⊂ Jac(�):

'− = {θ [δ](z − q/2) = 0} '+ = {θ [δ](z + q/2) = 0}
which are tangent to each other at the origin {z = 0}. Thus, U(z1(x

′), z2(x
′)) is a quasi-

periodic function of a complex variable x ′. Notice that a quasi-periodic genus 2 solution of
the nonlinear mKdV equation has the same form.

We also notice that a point E0 = (µ = 0, w = 0) is a Weierstrass (branch) point on
�. Then, following Clebsch and Gordan (1866), we have the following expression for the
symmetric polynomial:

µ1µ2 = )
θ2[δ + η0](z)

θ [δ](z + q/2)θ [δ](z − q/2)
) = const (2.10)

where η0 is a half-integer theta-characteristic corresponding to the branch point E0:

η0 = (η′′
0, η

′
0)
T

∫ E0

P0

(ω̄1, ω̄2)
T = 2π iη′′

0 + Bη′
0 ∈ C

2. (2.11)

Thus, the productµ1µ2 is a meromorphic function on Jac(�)having simple poles along'−,'+

and a double zero along another translate of the theta-divisor ', '0 = {θ [δ + η0](z) = 0},
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and passing through the origin and intersecting each of the translates '−,'+ at two points.
The translate '0 can also be interpreted as an image of the curve � under the action of the
Abel–Jacobi mapping (2.5):

'0 =
{ ∫ P

P0

(ω̄1, ω̄2)
T +

∫ E0

P0

(ω̄1, ω̄2)
T

∣∣∣∣P ∈ �

}
.

It follows from (2.4) and (2.10) that generically the derivative of the function x(x ′) is equal
to µ1µ2 and that it has a double zero each time the complex x ′-flow intersects '0, i.e. when
θ [δ+η0](z) vanishes, except at the points where the flow is tangent to'0, i.e. when θ [δ+η0](z)
has a higher vanishing order in both x ′ and µ1µ2. Let z0 denote coordinates of a point on '0

and x ′
0, x0 denote the corresponding values of x ′ and x respectively. Then a function x(x ′)−x0

has a triple zero at x ′
0 and

x ′ − x ′
0 = O((x − x0)

1/3). (2.12)

On the other hand, in view of the second equation of (2.3), the original variable x is a
sum of Abelian integrals of the third kind. Introduce the normalized differentials of third kind
+∞−∞+ on � having poles at ∞−,∞+ with residues ±1:

+∞−∞+ = µ2 dµ√
R6(µ)

+ h1ω̄1 + h2ω̄2 (2.13)

where h1, h2 are normalizing constants specified by +∞−∞+ having zero A-periods on �.
According to Clebsch and Gordan (1866), one has∫ P1

P0

+∞−∞+ +
∫ P2

P0

+∞−∞+ = log
θ [δ](z + q/2)

θ [δ](z − q/2)
+ const. (2.14)

Then, in view of the second equation in (2.2) and (2.13), we obtain

x(x ′) = log
θ [δ](z + q/2)

θ [δ](z − q/2)
− h1z1 − h2z2 + const

z1 = d11x
′ + const z2 = d21x

′ + const.
(2.15)

As a result, we expressed a stationary quasi-periodic solutionU and the argument x in terms of
the auxiliary complex variable x ′. An algebraic geometrical structure of the general solution
U(x, t) and the behaviour of real-valued solutions will be considered in the next section.

Stationary quasi-periodic solutions for the Dym equation. Now we pass to the Dym
equation (1.2) and seek its solutions in the form (2.1). In this case the variables µ1 and
µ2 again change according to equations of the form (2.2) with the only difference being that
the order of the polynomial defining the corresponding hyperelliptic curve is odd:

µ1 dµ1

2
√
R5(µ1)

+
µ2 dµ2

2
√
R5(µ2)

= dt

µ2
1 dµ1

2
√
R5(µ1)

+
µ2

2 dµ2

2
√
R5(µ2)

= dx

R5(µ) = −κµ(µ− a1) · · · (µ− a4).

(2.16)

Hence the corresponding hyperelliptic curve � = {w2 = R5(µ)} has just one infinite point
∞. As a consequence, the equations (2.16) contain one holomorphic differential and one
differential of the second kind.

As before, we first consider stationary solutions by putting t = t0 (dt = 0) and assuming
κ = 1. Notice that under these conditions, (2.16) has the same structure as quadratures for
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the Jacobi problem of geodesics on a triaxial ellipsoid Q, where µ1 and µ2 play the role of
ellipsoidal coordinates on Q, parameters (a1, a2, a3) are the squares of the semi-axes of Q, a4

is a constant of motion and x is the length along a geodesic.
After using the change of parameter (2.4), we arrive at the Abel–Jacobi mapping

∫ P1

P0

dµ

2
√
R5(µ)

+
∫ P2

P0

dµ

2
√
R5(µ)

= u1

∫ P1

P0

µ dµ

2
√
R5(µ)

+
∫ P2

P0

µ dµ

2
√
R5(µ)

= u2

u1 = x ′ + const u2 = const.

(2.17)

This change of parameter was first used by Weierstrass (1878) in order to find the theta-
functional solution for the geodesic problem (see also Cewen 1990). Notice that he was
interested only in describing the geometrical trajectories (geodesics) and did not consider
dynamics along those trajectories. (Namely, he did not consider returning to the initial
parametrization in the final formulae.)

We introduce normalized holomorphic differentials ω̄1, ω̄2 on � and a normalized
differential of the second kind having a double pole at ∞

+(1)
∞ = µ2

i dµi

2
√
R5(µi)

+ h′
1ω̄1 + h′

2ω̄2. (2.18)

Now use (2.6) for determining coordinates z1, z2 on the universal covering of Jac(�). The
constants h′

1, h
′
2 are uniquely determined by requiring +(1)

∞ to have zero A-periods on �. Now,
instead of the expressions (2.8) and (2.10), one has (see, e.g., Dubrovin 1981, Dubrovin et al
1985)

U(x ′) = µ1 + µ2 = const − ∂2
V θ [δ](z)

z1 = d11x
′ + const z2 = d21x

′ + const
(2.19)

where ∂V is a derivative along the tangent vector V of � ∈ Jac(�) at ∞: V = (d12, d22)
T.

Also, the following expression holds:

µ1µ2 = κ
θ2[δ + η0](z)

θ2[δ](z)
κ = const (2.20)

where the characteristic η0 is defined in (2.11). In addition, in contrast to (2.14), the sum of
Abelian integrals of the second kind has the form

∫ P1

P0

+(1)
∞ +

∫ P2

P0

+(1)
∞ = const − ∂V log θ [δ](z). (2.21)

Comparing this with (2.18) yields the following analogue of the relation (2.15) between the
parameters x and x ′:

x(x ′) = −∂V log θ [δ](z)− h1z1 − h2z2 + const

z1 = d11x
′ + const z2 = d21x

′ + const.
(2.22)

Thus, we have expressed the stationary solutionU and the argument x in terms of the auxiliary
complex variable x ′. Real-valued solutions defined by the above expressions will be considered
in section 4.
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3. Time-dependent quasi-periodic solutions

The quasi-periodic solutions for the SW equation. In order to obtain general time-dependent
solutions U(x, t) of the SW equation given by (2.1), one has to invert the mapping (2.3).
However, as already mentioned, the problem of inversion cannot be solved in terms of
meromorphic functions.

To describe the structure of general solutions, let us first consider a divisor of three points
Pi = (µi, wi), i = 1, 2, 3 on � \ {∞−,∞+} and the following extended equations:

3∑
i=1

dµi

2
√
R6(µi)

= dy
3∑

i=1

µi dµi

2
√
R6(µ1)

= dt
3∑

i=1

µ2
i dµi

2
√
R6(µi)

= dx (3.1)

which include an extra variable y, two holomorphic differentials and one differential of the
third kind on�. The latter are linear combinations of the normalized differentials ω̄1, ω̄2, +±∞
defined in (2.6) and (2.13). According to Clebsch and Gordan (1866), equations (3.1) describe
a differential of a well defined mapping of the symmetric product (� \ {∞−,∞+})(3) to a
generalized Jacobian variety Jac(�,∞±), a noncompact algebraic group represented in the
form of a quotient of C

3 by a lattice 0 generated by five vectors of periods of the differentials
ω̄1, ω̄2, +±∞ on �. Topologically, Jac(�,∞±) is a product of a two-dimensional variety
Jac(�) and a cylinder C

∗ = C \ {0}. An analytical and algebraic–geometrical description of
generalized Jacobians can be found in Clebsch and Gordan (1866), Belokolos et al (1994),
Fedorov (1999) and Gavrilov (2000).

Let (z1, z2, Z) be coordinates on the universal covering of Jac(�,∞±) such that
3∑

i=1

∫ Pi

P0

ω̄1 = z1

3∑
i=1

∫ Pi

P0

ω̄2 = z2

3∑
i=1

∫ Pi

P0

+±∞ = Z (3.2)

where, as above, P0 = (a5, 0). Then, (2.6) and (2.13) yield

z1 = d11y + d12t + const z2 = d21y + d22t + const

Z = x + h1(d11y + d12t) + h2(d21y + d22t) + const.
(3.3)

The problem of inversion of Abel–Jacobi mappings which includes differentials of the third
and second kinds is solved in terms of generalized theta-functions which are finite sums of
products of customary theta-functions, rational functions and exponentials (see Ercolani 1989,
Fedorov 1999, Gagnon et al 1985). To invert the mapping (3.2), we shall make use of the
following theta-functions:

θ̃ (z, Z) = eZ/2θ(z + q/2) + e−Z/2θ(z − q/2)
θ̃ [η](z, Z) = eZ/2θ [η](z + q/2) + e−Z/2θ [η](z − q/2)

z = (z1, z2) q = (q1, q2)
T q1 =

∫ ∞+

∞−
ω̄1 q2 =

∫ ∞+

∞−
ω̄2

(3.4)

where θ(z) and θ [η](z) are customary theta-functions associated with the curve � with half-
integer theta-characteristics η. Like θ [η](z), generalized theta-functions have a quasi-periodic
property: a shift of the argument (z, Z) by any period vector of the generalized Jacobian results
in multiplication of θ̃ [η](z, Z) by a constant factor.

Now consider the dissection �̃ of � along the canonical cycles A1, A2, B1, B2, which is a
domain having the form of an octagon. In addition, we cut �̃ along the paths joining a point
O on the boundary ∂�̃ of �̃ to the points ∞−,∞+. On the resulting domain �̃′ we introduce
a single-valued function F̃ (P ) = θ̃ [δ](Ã(P )− (z, Z)T ), where

Ã(P ) =
( ∫ P

P0

ω̄1,

∫ P

P0

ω̄2,

∫ P

P0

+∞±

)T
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and the characteristic δ is defined in (2.9). Then the following analogue of the Riemann
theorem holds (see, e.g., Fedorov 1999, Gagnon et al 1985).

Theorem 3.1. Let the coordinates z, Z be such that the function F̃ (P ) does not vanish
identically on �̃′. Then it has precisely three zeros P1, P2, P3, which determine a unique
solution to the problem of inverting the generalized mapping (3.2).

Now let us consider the logarithmic differential µ(P ) d log F̃ (P ). Theorem 3.1 results in the
sum of residues of its poles in the domain �̃′ being equal to µ(P1) + µ(P2) + µ(P3). After
applying the residue theorem one obtains the following compact ‘trace formula’:

µ1 + µ2 + µ3 = const − eZθ [δ](z + q) + e−Zθ [δ](z − q)

θ [δ](z)
(3.5)

with the characteristic δ specified in (2.9).
The principal difference between the extended mappings (3.1) or (3.2) and the system (2.3)

is that the latter contains only two points on � \ {∞−,∞+}. On the other hand, (3.1) reduces
to (2.2) by fixing P3 ≡ P0 (µ3 ≡ a5, dµ3 ≡ 0). Under this condition, (3.2) describes the
embedding of the symmetric product (� \ {∞−,∞+})(2) into Jac(�,∞±). Its image is a two-
dimensional nonlinear analytic subvariety (stratum) W2. Like the generalized Jacobian itself,
it is a noncompact variety.

Remark 3.2. In the case of customary Jacobian varieties, corresponding nonlinear subvarieties
and their stratification have been studied by Gunning (1972) and Vanhaecke (1995). Such
varieties or their open subsets often appear as (coverings of) complex invariant manifolds of
finite-dimensional integrable systems (see Vanhaecke 1995, Abenda and Fedorov 2000).

It follows from the above that on the stratum W2 the variables z1, z2, Z play a role of
excessive (abundant) coordinates. Hence they cannot be independent there. An analytic
structure of W2 is explicitly described by the following theorem (see, e.g., Fedorov 1999,
Gagnon et al 1985).

Theorem 3.3. The subvariety W2 ⊂ Jac(�,∞±) coincides with the zero locus of the
generalized theta-function:

W2 = {eZ/2θ [δ](z + q/2)− e−Z/2θ [δ](z − q/2) = 0}. (3.6)

On the other hand, in view of relations (3.3), the coordinates z, Z are linear functions of the
variables x, t and y. Thus, equation (3.6) can be regarded as a constraint on them. It follows
that after fixing P3 = P0, y becomes a transcendental function of x, t .

Notice that the sum µ1 + µ2 + a5 = µ(P1) + µ(P2) + µ(P0), considered as a function on
Jac(�,∞±), coincides with the restriction to W2 of the sum µ(P1) + µ(P2) + µ(P3). Then,
using expression (3.5), one concludes that the two-phase solution of the SW equation has the
form

U(x, t) = const − eZθ [δ](z + q) + e−Zθ [δ](z − q)

θ [δ](z)
z1 = d11y + d12t z2 = d21y + d22t

Z = x + h1(d11y + d12t) + h2(d21y + d22t)

(3.7)

where an extra variable y depends on x and t according to (3.6). As a result, we arrive at the
following algebraic–geometric description of motion:

The x-flow and t-flow defined by equations (2.2) evolve on the nonlinear variety W2 ⊂
Jac(�,∞±) in such a way that y is a nonlinear transcendental function of x and t respectively.
This is why the flow is called a nonlinear flow.

We emphasize that the solution U(x, t) is meromorphic neither in x, nor in t .
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Remark 3.4. Let us consider the x-flow by setting t =const. It turns out that, up to an additive
constant, the extra variable y can now be identified with the auxiliary variable x ′ introduced
in (2.4), where we considered stationary solutions. Indeed, in view of (3.3), in this case the
condition in (3.6) becomes

Z = x + h1z1 + h2z2 + const = log
θ [δ](z − q/2)

θ [δ](z + q/2)
+ const (3.8)

which is equivalent to the relation (2.15) between x and x ′. In view of (3.8) and the addition
theorem for theta-functions, the solution (3.7) reduces to the stationary solution (2.8).

In contrast to x, the parameter t enters both expressions for z and Z in (3.7). Therefore,
in the case of the t-flow, t cannot be explicitly expressed in terms of y as is the case for the
x-flow. This implies that solutions U(x0, t), x0 = const, must have different properties in
comparison with (2.8).

The quasi-periodic solutions for the Dym equation. Now we proceed to the problem of
inversion (2.16) associated with the Dym-type equation which is related to the odd-order
hyperelliptic curve � = {w2 = R5(µ)}. As in the case of finite-dimensional reduction
of a class of quasi-periodic solutions of the SW equation, in order to describe the function
U(x, t) = µ1 + µ2, we first consider an ‘excessive’ divisor of three points Pi = (µi, wi),
i = 1, 2, 3 on � \ {∞} and the extended system of equations in the form

3∑
i=1

dµi

2
√
R5(µi)

= dy
3∑

i=1

µi dµi

2
√
R5(µ1)

= dt
3∑

i=1

µ2
i dµi

2
√
R5(µi)

= dx

R5(µ) = −κµ(µ− a1) . . . (µ− a4)

(3.9)

which include two holomorphic differentials and one differential of the second kind having
a double pole at ∞ ∈ �. These differentials are linear combinations of the normalized
differentials ω̄1, ω̄2, +

(1)
∞ defined in (2.6) and (2.18).

In contrast to (3.1), equations (3.9) describe a differential of a well defined mapping of the
symmetric product (� \ {∞})(3) to the generalized Jacobian variety Jac(�,∞), the quotient
of C

3 by the lattice generated by four period vectors of the differentials ω̄1, ω̄2, +
(1)
∞ on �.

Topologically this variety is a product of a two-dimensional variety Jac(�) and complex plane
C (see Clebsch and Gordan 1866, Gavrilov 2000).

Let us introduce coordinates z1, z2, Z as follows:

3∑
i=1

∫ Pi

E0

ω̄1 = z1

3∑
i=1

∫ Pi

E0

ω̄2 = z2

3∑
i=1

∫ Pi

E0

+(1)
∞ = Z (3.10)

where the basepoint is chosen as E0 = (0, 0). We cannot choose the basepoint to be ∞ as
in the previous section, since it is a pole of +(1)

∞ . Next, comparing (2.6) and (2.18) with (3.9)
yields the following relations:

z1 = d11y + d12t + const z2 = d21y + d22t + const

Z = x + h′
1(d11y + d12t) + h′

2(d21y + d22t) + const.
(3.11)

The mapping (3.10) is invertible in terms of meromorphic functions. The inversion problem
is solved by means of the following rational degeneration of the customary theta-function:

θ̂ (z, Z) = Zθ [δ](z) + ∂V θ [δ](z) (3.12)

where ∂V is defined in (2.19) (compare with the generalized theta-functions (3.4)). The
function (3.12) enjoys the quasi-periodic property.



Nonlinear subvarieties of generalized Jacobians 8419

Consider again the dissection �̃ of � and cut it along a path joining a point O on the
boundary ∂� to ∞. In the resulting domain we introduce a single-valued function

F̂ (P ) =
(
Z −

∫ P

E0

+(1)
∞

)
θ [δ]

(
z −

∫ ∞

E0

ω̄ −
∫ P

E0

ω̄

)
+ ∂V θ [δ]

(
z −

∫ ∞

E0

ω̄ −
∫ P

E0

ω̄

)
.

Using a modification of theorem 3.1 and calculating the logarithmic differential
µ(P ) d log F̂ (P ), one obtains that

µ1 + µ2 + µ3 = const − (Z + ∂V log θ [δ + η0](z))2 − ∂2
V log θ [δ + η0](z)

= const − Z2 − 2Z∂V θ [δ + η0](z)− ∂2
V θ [δ + η0](z)

θ [δ + η0](z)
(3.13)

where η0 = (η′′
0, η

′
0)
T ∈ 1

2 Z
2/Z2 is chosen such that 2π iη′′

0 + Bη′
0 = ∫ ∞

E0
(ω̄1, ω̄2)

T . Now,
similarly to the case of the SW equation, we fix P3 ≡ E0 (µ3 = 0, dµ3 ≡ 0) in the
mapping (3.10). Its image becomes a two-dimensional nonlinear noncompact analytical
subvariety Ŵ2 ⊂ Jac(�,∞). Comparing the third sum in (3.10) and expression (2.21) yields

Ŵ2 = {Z + const + ∂V log θ [δ + η0](z) = 0}. (3.14)

Finally, taking into account the trace formula (3.13) we conclude that the solution of the Dym
equation has the form

U(x, t) = µ1 + µ2 = const − ∂2
V log θ [δ + η0](z)

z1 = d11y + d12t + const z2 = d21y + d22t + const
(3.15)

where an extra variable y, according to the constraint (3.14) and an expression for Z in (3.11),
depends on (x, t) in a transcendental way. The solution U(x, t) is not meromorphic with
respect to its arguments.

Remark 3.5. As in the case of the SW equation, the stationary solutions for the Dym-type
equation given in the previous section can be obtained from (3.15) by setting t =const. Then
y can be identified with an auxiliary variable x ′ defined in (2.4) and the condition in (3.14)
becomes equivalent to the relation (2.22) between x and x ′. As a result, (3.15) gives precisely
the stationary solution (2.19).

The g-phase solutions as well as their different singular limiting cases are described in detail
by Alber and Fedorov (2000).

Real bounded stationary solutions. The branching of complex stationary solutions of the SW
and Dym-type equations may lead to existence of cusps in their real-valued solutions viewed
as functions of x ∈ R.

Let σ be an antiholomorphic involution on the genus n curve � = {w2 = µR(µ)}.
The part of � which is invariant with respect to σ is called a real part �R. On the plane
R

2 = (Reµ,Rew) it is either an empty set or a union of ovals. By using an Abel–Jacobi
mapping the involution σ lifts to Jac(�). By JacR(�) we denote the real part of Jac(�) that
is invariant under σ . The elementary symmetric functions of the variables µ1, . . . , µn take
real values on JacR(�) and only there. Notice that the variables themselves are not necessarily
real: some of them (or all) may be complex conjugate.

Suppose all the roots of the polynomial R(µ) are real and positive, i.e. �R consists of
s = n or n + 1 ovals. According to a theorem by Comessatti (1924), there are 2n−1 connected
components of JacR(�) on which the elementary symmetric functions of the µ-variables are
finite. The components are divided into two classes characterized by different behaviour of
real solutions U(x, t0).
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Case 1. One of the µ-variables evolves in the interval [0, a1], whereas other variables evolve
in intervals [aj , aj+1] or come in complex conjugate pairs. The sum µ1 + · · · + µn is a real-
valued quasi-periodic function of x ′ having no poles, whereas the product µ1 . . . µn must have
zeros in x ′. These are generically double zeros, and the function x(x ′) behaves in accordance
with

x ′ − x ′
0 = O((x − x0)

1/3) (3.16)

which implies that the graph of U(x, t0) has a cusp. Due to quasi-periodicity of evolution of
the µ-variable in the interval [0, a1], there is an infinite number of such cusps.

Case 2. None of the µ-variables evolves in the interval [0, a1]. Then the product µ1 . . . µn

never vanishes. In view of (2.4), x(x ′) and x ′(x) are strictly monotonic real smooth functions.
Therefore composition U(x, t0) = U(x ′(x)) is a quasi-periodic smooth function. As a result,
we proved the following theorem.

Theorem 3.6. A real-valued quasi-periodic stationary solution U(x, t0) to the HD and SW
equations is either a smooth quasi-periodic function or a function containing an infinite quasi-
periodic sequence of cusps.

4. Singular limits of the quasi-periodic solutions

Here we study certain degenerate cases of the quasi-periodic solutions of which the behaviour
is similar to that of solitons. They are obtained after pinching to points all A-cycles on
the associated hyperelliptic Riemann surface � = {w2 = µR(µ)}. The solutions are then
expressed in terms of purely exponential tau-functions and, in the real bounded case, they
describe an interaction of several smooth solitons or cuspons.

Shallow-water equation. Let us consider the following limiting form of a polynomial:

R(µ) = (µ− a)(µ− b1)
2 . . . (µ− bn)

2

where a, b1, . . . , bn are arbitrary nonzero constants. Then the system of equations

n∑
i=1

µk
i dµi

2(µi − b1) . . . (µi − bn)
√
µi(µi − a)

=




0 k = 1, . . . , n− 2

dt k = n− 1

dx k = n

(4.1)

describes a class of soliton-type solutions of the SW equation. This system involves only
differentials of the third kind on the genus 0 surface P = {w2 = µ(µ − a)} which have pairs
of simple poles at the points Q−

i ,Q
+
i with the coordinates µi = bi and at the infinite points

∞−,∞+.
Let us introduce corresponding normalized differentials of the third kind

+i =
√
bi(bi − a) dµ

(µ− bi)w
i = 1, . . . , n +±∞ = dµ

w
(4.2)

each of them having one pair of poles at the points described above with residue ±1. Notice
that the left-hand sides of (4.1) are linear combinations of the n + 1 differentials (4.2) with
constant coefficients depending on a, bi .

We first extend the system (4.1) by introducing an extra variable y such that
n∑
i=1

dµi

2(µi − b1) . . . (µi − bn)
√
µi(µi − a)

= dy. (4.3)
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Next, instead of n points, we consider the divisor of n+1 points on P\{Q±
i ,∞±} and represent

the extension of the system (4.1) and (4.3) in the integral form which involves the following
normalized differentials:

n+1∑
k=1

∫ Pk

P0

+i = zi k = 1, . . . , n
n+1∑
i=1

∫ Pi

P0

+±∞ = zn+1 (4.4)

where we set P0 = (a, 0) ∈ P. After comparing (4.4), (4.2) with (4.1), (4.3) we find that

zi = 2
√
bi(bi − a)

(
t − (−1)n

b1 . . . bn

bi
y

)
+ const i = 1, . . . , n

zn+1 = 2x − 2(b1 + · · · + bn)t + 2 b1 . . . bn y + const.
(4.5)

The system (4.4) represents a well defined mapping of a symmetric product (P \
{Q±

1 , . . . ,Q
±
n ,∞±})(n+1) to the generalized Jacobian variety denoted as Jac(P,Q±

i ,∞±),
which is now isomorphic to (C∗)n+1 (see, e.g., Mumford 1983).

To simplify calculations further, we apply a projective transformation µ = aλ/(λ − 1)
which maps branch points µ = 0 and µ = a of P to zero and infinity respectively. As a result,
the differentials (4.2) take the following form:

+i = αi dλ

(λ− α2
i )

√
λ

αi =
√
bi/(bi − a) i = 1, . . . , n

+±∞ = +n+1 = αn+1 dλ

(λ− α2
n+1)

√
λ

αn+1 = 1.
(4.6)

After integrating equations (4.4) and setting ξi = √
λi , one obtains that

(ξ1 − αk) . . . (ξn+1 − αk)

(ξ1 + αk) . . . (ξn+1 + αk)
= ezk k = 1, . . . , n + 1. (4.7)

The problem of inversion of (4.7) is solvable by using a standard (n + 1)-dimensional tau-
function (see, e.g., Mumford 1983), which is a degenerate form of Riemann theta-function, or
by using generalized theta-functions which we represent in the following symmetric form:

τ(z1, . . . , zg|α1, . . . , αg) =
∑
εk=±1

exp{ 1
2 (ε, z) + 1

2 (ε
T Sε)}

ε = (ε1, . . . , εg)
T Sij = 1

4
log

(
αi − αj

αi + αj

)2

Sii = 0 i, j = 1, . . . , g g � 2.

(4.8)

Notice that in our case g = n + 1. The parameter 4Sij = 4Sji is an integral of the differential
+j taken along the path joining the poles of +i on P. In particular, the following analogue for
tau-functions of the Matveev–Its formula holds (see, e.g., McKean 1979):

λ1 + · · · + λg = ∂2
V log τ(z, α) + α2

1 + · · · + α2
g ∂V = 2

g∑
k=1

αk
∂

∂zk
. (4.9)

Also, as noticed by Hirota, the expression

u(x, t) = ∂2
V log τ(z, α) zk = zk0 + αkx + 4α3

k t zk0 = const

involving tau-function (4.8) provides a g-soliton solution to the KdV equation and describes
interaction of g solitary waves on the line x.

Notice that the system (4.7) represents a system of linear equations with respect to the
elementary symmetric functions of ξ1, . . . , ξn+1. Solving it, we arrive at the following lemma.
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Lemma 4.1. The following expressions in terms of tau-functions hold:

µ1 + · · · + µn+1 ≡ a

n+1∑
i=1

ξ 2
i

ξ 2
i − 1

= a
ezn+1τn(z + 4S̄n) + e−zn+1τn(z − 4S̄n)

4τn(z)
+ const (4.10)

S̄n = (S1,n+1, . . . , Sn,n+1)
T ∈ C

n

√
µ1, . . . , µn+1 ≡ ξ1 . . . ξn+1 = τ(z1 + π i, . . . , zn+1 + π i)

τ (z1, . . . , zn+1)

(4.11)

where τn(z) = τ(z1, . . . , zn) is an n-dimensional tau-function.

Notice that the mapping (4.4) is reduced to the mapping defined by the union of (4.1) and (4.3),
if we put, for example, Pn+1 ≡ (0, 0), which corresponds to ξn+1 ≡ 0 in (4.7). Under this
condition, the variables zi become dependent. After setting ξ1 . . . ξn+1 = 0 in (4.11), we obtain
the following constraint:

τ(z1 + π i, . . . , zn+1 + π i) = 0. (4.12)

This defines a nonlinear n-dimensional subvariety of the generalized Jacobian
Jac(P,Q±

i ,∞±). As a result, by using the trace formula (4.10) and the linear dependence
of zi on (x, t, y) in (4.5), we arrive at the following theorem.

Theorem 4.2. The soliton-like solution of the SW equation has the form

U(x, t) = a
ezn+1τn(z + 4S̄n) + e−zn+1τn(z − 4S̄n)

4τn(z)
+ const

S̄n = (S1,n+1, . . . , Sn,n+1)
T

zi = 2
√
bi(bi − a)

(
t − (−1)n

b1 . . . bn

bi
y

)
+ const i = 1, . . . , n

zn+1 = 2x − 2(b1 + · · · + bn)t + 2 b1 . . . bn y + const

(4.13)

where the extra variable y depends on x, t according to (4.12).

Now let us assume without loss of generality that a, b1, . . . , bn ∈ R and b1 < · · · < bn. Let
s be the number of constants bi that are separated from zero by a. Then the properties of
real-valued bounded solutions U(x, t) are described by the following theorem.

Theorem 4.3. For real x, t and the additive constants in (4.5), the solution (4.13) has no poles
and is real as well. It describes an interaction of s̃ smooth solitary waves with n − s̃ solitary
cusps which results in phase shifts after each interaction in a way similar to the n-soliton
interaction for the KdV equation. Parameter s̃ depends on the values of the additive constants
in (4.5):

s̃ = s, s + 2, . . . , s + 2[(n− s)/2].

For details see Alber and Fedorov (2000).

Dym equation. We now concentrate on soliton-like solutions of the Dym-type equation
associated with the following limiting form of an odd-order hyperelliptic curve �:

R(µ) = (µ− b1)
2 . . . (µ− bn)

2

b1, . . . , bn again being arbitrary nonzero constants. As we shall see below, corresponding
expressions in terms of tau-functions have a structure different from the SW case. The
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differential equations which describe soliton-like solutions of the Dym-type equation have
the form

n∑
i=1

µk
i dµi

2(µi − b1) . . . (µi − bn)
√
µi

=




0 k = 1, . . . , n− 2

dt k = n− 1

dx k = n.

(4.14)

This system includes meromorphic differentials defined on the genus 0 surface P = {ξ 2 = µ}
having pairs of simple poles (Q−

i ,Q
+
i ), i = 1, . . . , nwith the coordinatesµ = bi respectively,

and a double pole at ∞ ∈ P.
Let us introduce corresponding normalized differentials of the third and second kinds

+i = βi dµ

(µ− bi)ξ
βi =

√
bi i = 1, . . . , n +(1)

∞ = −dµ

2ξ
. (4.15)

Now extend the system of equations (4.14) by introducing an extra variable y as follows:
n∑
i=1

dµi

2(µi − b1) . . . (µi − bn)
√
µi

= dy. (4.16)

As in the case of the SW equation, we first consider n + 1 points Pi = (µi, ξi) on

P
′ = P \ {Q−

1 ,Q
+
1, . . . ,Q

−
n ,Q

+
n,∞}

and the following extended sums of integrals:
n+1∑
i=1

∫ Pi

P0

+i = zi i = 1, . . . , n
n+1∑
i=1

∫ Pi

P0

+(1)
∞ = zn+1 (4.17)

with the basepoint P0 = (0, 0). This describes a well defined invertible mapping of the
symmetric product (P′)(n+1) to the generalized Jacobian Jac(P,Q±

i ,∞) which is isomorphic
to the direct product of C and n copies of C

∗ and which is topologically different from that the
generalized Jacobian arising in the case of the SW equation.

Comparing (4.14), (4.16) with (4.17), one again arrives at the relations (4.5) which describe
linear dependence of zi on x, t , and y.

Now integrating (4.17), we obtain the following relations:
(ξ1 − βk) . . . (ξn+1 − βk)

(ξ1 + βk) . . . (ξn+1 + βk)
= ezk k = 1, . . . , n

ξ1 + · · · + ξn+1 = −zn+1

(4.18)

which can be regarded as a system of linear algebraic equations with respect to the elementary
symmetric functions of ξi . After solving this system we obtain the expression

n+1∑
i=1

µi =
n∑

k=1

β2
k − (zn+1 + ∂Wτn(z))

2 − ∂2
Wτn(z) (4.19)

ξ1 . . . ξn = β1 . . . βn [zn+1 + ∂Wτn(z)] (4.20)

where τn(z) is an n-dimensional tau-function defined in (4.8) with g = n, αk is replaced by βk
and ∂W = ∑n

k=1 βk ∂/∂zk .
Now we fix Pn+1 in the mapping (4.17) by setting ξn+1 = 0. Then, according to (4.20),

we get a constraint on the variables z1, . . . , zn+1 in the form

zn+1 + ∂Wτn(z) = 0. (4.21)

This equation defines a nonlinear n-dimensional subvariety of the generalized Jacobian
Jac(P,Q±

i ,∞).
As a result, comparing the expression (4.19) with the trace formula (1.3) and using the

linear relations (4.5), we arrive at the following theorem.
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Theorem 4.4. Soliton-like solutions of the Dym-type equation are given by

U(x, t) =
n∑

k=1

β2
k − (zn+1 + ∂Wτn(z))

2 − ∂2
Wτn(z)

zi = 2
√
bi(bi − a)

(
t − (−1)n

b1 . . . bn

bi
y

)
+ const i = 1, . . . , n

zn+1 = 2x − 2(b1 + · · · + bn)t + 2 b1 . . . bn y + const

(4.22)

where an extra variable y depends on x, t according to the constraint equation (4.21).
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